
PROGRAMMER'S CHALLENGE
by Bob Boonstra, Westford, MA

BESORT

The theme of this issue of the magazine is the Be Operating System, so it seemed appropriate to
focus the Challenge on the BeOS and give you a chance to use the BeOS for Macintosh CD-ROM
bundled in this issue. Since the BeOS will be new to most of you, this Challenge will be a simple one.
The problem is to write a window class that will display and sort a list of strings by one of three
specified methods: a bubble sort, an exchange sort, and an algorithm of your choosing. The prototype
for the class you should write is:

typedef enum SortType {
kBubbleSort = 1,
kExchangeSort = 2,
kMySort = 3

} SortType;

class SortWindow : public BWindow {

public:
SortWindow(BRect frame);

virtual void DoSort(
char *thingsToSort[], /* list of strings to sort, also returns sorted list */
int numberOfThings, /* number of thingsToSort */
SortType sortMethod); /* sort method to use */

};

My test code will open three instances of your window class and ask each one to sort a copy of the
same list of strings, one by the kBubbleSort method, one by kExchangeSort, and one by kMySort. Your
SortWindow constructor should create a BListView, and attach it to your SortWindow. When the DoSort method
is invoked, you should display the thingsToSort, and sort them into ascending ASCII order by the
sortMethod algorithm. Each time two thingsToSort are exchanged, the BListView display should be updated.
When the sort is complete, DoSort should post a B_QUIT_REQUESTED message to the application. The list
should be sorted in place and returned in thingsToSort.

This will be a native PowerPC Challenge, using the latest Macintosh CodeWarrior environment,
targeted for the BeOS. Solutions must be coded in C++. The code will be tested on my 8500 using the
BeOS. (In the event I cannot get the BeOS to run on my Mac, I will run the tests on a 2x133MHz
BeBox with one processor disabled.) The winner will be the solution that completes all three sorts
correctly in the minimum time.

THREE MONTHS AGO WINNER

Congratulations to Andy Antoniewicz (Mountain View, CA) for narrowly beating second and third
place finishers Greg Cooper and Ludovic Nicolle in the October DNA Match Challenge. Of the fifteen
entries I received for this Challenge, ten worked completely correctly, two were partially correct, and
the remaining three crashed my machine.

Recall that the DNA Match Challenge was essentially a string matching problem, where the strings
were allowed to differ in a specified number of positions (or fewer). The object was to return the
number of near matches of a fragment string found in a reference database string.

My intent had been to test the solutions submitted using very long database strings. The run times of
the solutions imposed a practical limit of about 2 MB on the size of the database string in an individual
test case. The fragments to be matched were all significantly shorter than the database string, as
indicated in the problem statement. The tests ranged from requiring very accurate matches, with a small
value for the number of differences allowed, to approximate matches that could differ in up to half of
the characters in the reference string.

The problem statement allowed for a timed initialization routine that would be executed once prior
to testing matches against multiple fragments for a given database string. None of the top-ranked
solutions made any significant use of this option, although a number of people used it to initialize small
translation tables. Several people commented that it was difficult to find a use for this initialization
routine when the scratch storage provided was smaller than the maximum size database string.

Andy's winning entry parses the fragment string to create, for each character in the DNA "alphabet",
a list of offsets where that character is located in the fragment. He then walks the database string and
increments a match counter for each possible alignment of the fragment that matches the database at that
character position. Andy uses a circular buffer twice the size of the fragment to store the match counts,
which allows him to perform bounds checking on that buffer only once per database character rather
than within the innermost character matching loop. I had to read the code several times and run through
a few cases manually before the light went on and I understood the algorithm, after which I found it
quite clever.

While A.C.C. Murphy's solution did not place in the top five, one of his algorithms used a
refinement worthy of note. He kept a running total of the counts of characters in a fragment-sized
segment of the database, only checking for a specific match if the frequency counts were close enough
to those of the fragment. In test cases where the character frequencies of the fragment were significantly
different than much of the database, this technique might have done very well.

The table below summarizes the results for each correct or partially correct entry, including total
execution time for all of the test cases and code size. Numbers in parenthesis after a person's name
indicate that person's cumulative point total for all previous Challenges, not including this one. An
asterisk indicates a result that was partially correct and therefore not eligible to win.

Name Language Total Time Code Size
Andy Antoniewicz (4) C 123823 728
Greg Cooper (17) C 126233 872
Ludovic Nicolle (14) C 126646 528
Michael Panchenko (6) C 148243 800
Bjorn Davidsson (4) C 149171 424
A.C.C. Murphy (10) C 151086 1800
Ernst Munter (224) C++ 176521 752
Peter Lewis (32) C 195312 240
Mark Day C 197385 848
Larry Landry (29) C 267118 1376
Alan Hart (*) C 210701 848
Xin Xu (*) C 223015 1576

TOP 20 CONTESTANTS
Here are the Top 20 Contestants for the Programmer’s Challenge. The numbers below include

points awarded over the 24 most recent contests, including points earned by this month's entrants.

 Rank Name Points Rank Name Points

 1. Munter, Ernst 193 11. Kasparian, Raffi 22
 2. Gregg, Xan 114 12. Cutts, Kevin 21
 3. Larsson, Gustav 87 13. Nicolle, Ludovic 21
 4. Lengyel, Eric 40 14. Picao, Miguel Cruz 21
 5. [Name deleted] 40 15. Brown, Jorg 20
 6. Lewis, Peter 32 16. Gundrum, Eric 20
 7. Boring, Randy 27 17. Karsh, Bill 19
 8. Cooper, Greg 27 18. Stenger, Allen 19
 9. Antoniewicz, Andy 24 19. Mallett, Jeff 17
 10. Beith, Gary 24 20. Nevard, John 17

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person
to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I
use. The points you can win are:

1st place 20 points 5th place 2 points
2nd place 10 points finding bug 2 points
3rd place 7 points suggesting Challenge 2 points
4th place 4 points

Here is Andy's winning solution:

DNA_MATCH.C
Copyright © 1996 By Andy Antoniewicz

/*
Problem:

DNA string match with wildcard & constant distance

Notes:
No setup calculations on the database are performed.
It seemed kind of pointless to attempt the equivalent
of a 50 to 1 loss, less compression of the database
(it was 1000 to 1 for the first problem statement).

This is a simple and quick single byte per pass index
and count type algorithm. It uses three tables:

a byte to code index table "aTable",
a fragment index list array "alphaList",
and a hit count circular array "matchQueue".

A precursor list is built and used once to build the
alphaList array, and I do not clean up after (plenty
of allocated storage).

Once built, the aTable contains an index into the
alphaList for each given alphabet letter in the
fragment. The alphaList contains a sequential list of
all occurrences of that character in the fragment
string.

The algorithm then increments the match count for all
possible alignments of the fragment for each database
character. Since the maximum misalignment is less
than the fragment size, only the previous fragmentSize
database characters need to be considered for matches

at any particular time. Hence the circular queue.

The database search execution time is order(pN) where
 N = number of database characters
 p = average fragment entries per alphabet char
 (for example: A=3,C=3,G=2,T=2 --> p = 2.5)

The storage used is almost totally dependent on the
fragment size. Storage used in bytes

= 20 (storage struct)
+ 256 (16bit aTable)
+ 2 * fragment chars (16bit precursor)
+ 2 * fragment chars (16bit alphaList)
+ 2 * alphabet chars (more alphaList)
+ 4 * fragment chars (2x16bit matchQueue)

 ********* ********* ********* ********* ********* ********/

#define kAlphaTableSize 128
#define kEndOfAlphaList -1

typedef struct {
long storageSize; // total storage available
long usedStorage; // total storage used
long fragmentSize; // size in chars of fragment
short *alphaList; // start of fragment index list
short *matchQueue; // start of match count queue

short alphaTable[kAlphaTableSize];
short precursor[]; // start of match count queue

} DNAStore;

/********* ********* ********* ********* ********* ********
Function Prototypes

 ********* ********* ********* ********* ********* ********/

void InitMatch(
char *alphabet, // legal characters in database
char *database, // the reference database
void *storage, // pre-allocated storage
long storageSize // size of storage in bytes

);

long FindMatch(// return number of matches
char *alphabet, // legal characters in database
char *database, // the reference database
void *storage, // pre-allocated storage
char *fragment, // the fragment to find
long diffsAllowed, // num of diffs allowed between

// a "match" and the database
long matchPosition[] // match return array

);

void BuildAlphaList(
char *alphabet, // legal characters in database
char *fragment, // the fragment to find; 0 term
DNAStore *storage // my storage area

);

/********* ********* ********* ********* ********* ********
 * InitMatch
 * This routine does nothing except to store the
 * size of memory allocated by the calling program.
 * All of the structures used are based on the fragment
 * to be searched for.
 ********* ********* ********* ********* ********* ********/

InitMatch
void InitMatch(
char *alphabet, // legal characters in database
char *database, // the reference database
void *storage, // pre-allocated storage
long storageSize // size of storage in bytes

)
{
((DNAStore*)storage)->storageSize = storageSize;

} // end of InitMatch

/********* ********* ********* ********* ********* ********
 * BuildAlphaList
 *
 * This routine has three parts:
 * Build the AlphaTable
 * The AlphaTable is an index table used to find
 * the start location inside the AlphaList
 * that corresponds to the given alphabet
 * character.
 * Build the AlphaList precursor
 * This is a linked list of the indexes to each
 * character in the fragment. It is used once
 * to build the AlphaList and never re-used.
 * Build the AlphaList
 * This is a sorted list of indexes for each
 * alphabet character. The head of each list is
 * stored in the AlphaTable, and each list is
 * ended by a -1.
 *
 ********* ********* ********* ********* ********* ********/

BuildAlphaList
void BuildAlphaList(
char *alphabet, // legal characters in database
char *fragment, // the fragment to find; 0 term
DNAStore *storage // my storage area

)
{
short *aTable; // ptr in the AlphaTable
short *precursor; // the AlphaList precursor
short *alphaList; // the AlphaList

char *aString; // ptr to a character string
long aChar; // a character from a string

long count;
short index;

 /*********
 * Initialize alphabet entries to kEndOfAlphaList
 * Proper function for characters not in the alphabet
 * requires that the other entries be preset to zero.
 * This is automatic if the storage is cleared by
 * the calling program and if the alphabet does not
 * change between calls to InitMatch.
 */
aTable = storage->alphaTable;
aString = alphabet - 1;
while((aChar = (long)(*(++aString))) > 0x00)
{
*(aTable+aChar) = kEndOfAlphaList;

}

 /*********
 * Build precursor linked index list
 * This list is only used to produce the
 * AlphaList below. The precursor and
 * the AlphaList are rebuilt for each
 * new fragment that will be searched for.
 */
precursor = storage->precursor;
aString = fragment - 1;
index = 0;
count = 0;
while((aChar = (long)(*(++aString))) > 0x00)
{
index = *(aTable+aChar); // get prev head
*(aTable+aChar) = count; // put new head
*(precursor+count) = index; // store prev head
count++;

}
storage->fragmentSize = count;

 /*********
 * Build AlphaList
 * by walking each alphabet character's precursor
 * list and writing the index list into the
 * AlphaList the algorithm gets a sorted list of
 * indexes into the fragment for each letter in the
 * alphabet. The aTable will point to the first entry
 * in the AlphaList and the last entry of each
 * character list is equal to the constant
 * kEndOfAlphaList (= -1). Note that AlphaList
 * location 0 is used to ignore database characters
 * which are not in the given alphabet (it was free).
 */
alphaList = precursor + count;
*(alphaList) = kEndOfAlphaList;
aString = alphabet - 1;
count = 1;
while((aChar = (long)(*(++aString))) > 0x00)
{

index = *(aTable+aChar);
*(aTable+aChar) = count;
while(index != kEndOfAlphaList)
{
*(alphaList+count) = index;
index = *(precursor+index);
count++;

}
*(alphaList+count) = kEndOfAlphaList;
count++;

}
storage->alphaList = alphaList;
storage->matchQueue = alphaList + count + 1;

} // end of BuildAlphaList

/********* ********* ********* ********* ********* ********
 * FindMatch
 *
 * For each character in the database increment every
 * match count that has the same character (a hit).
 * If after all possible alignments have been tallied,
 * the match count is greater than or equal to the value
 * of the threshold, then a match has been found.
 * Add the matching entry to the return array and continue
 * until all database characters have been tested.
 *
 ********* ********* ********* ********* ********* ********/

FindMatch
long FindMatch(// return number of matches
char *alphabet, // legal characters in database
char *database, // the reference database
void *storage, // pre-allocated storage
char *fragment, // the fragment to find
long diffsAllowed, // num of diffs allowed between

// a "match" and the fragment
long matchPosition[] // match return array

)
{
DNAStore *theStore; // typed storage
short *matchTop; // top of match array
short *matchCur; // current match array entry
short *aTable; // alpha to aList index table
short *aList; // array of hit offsets
short *hitOffset; // current hit offset entry
char *dbString; // current database char entry
long dbChar; // current database character
long count; // current database location
long numMatch; // number of matches found
long fragSize; // fragment size in bytes
long loop; // loop counter
long hitPos; // current hit offset position
long threshold; // the threshold for matching

theStore = (DNAStore*)storage;

BuildAlphaList(alphabet,fragment,theStore);
fragSize = theStore->fragmentSize;
matchTop = theStore->matchQueue;
matchCur = matchTop + fragSize;

theStore->usedStorage
= (long)(matchCur+fragSize)-(long)theStore;

/*********
 * Clear the Match Count Array
 * clear out the match counts for the entire array
 */
for(count=0; count<fragSize; count++)
{
*(matchCur+fragSize) = 0;
*matchCur-- = 0;

}

/*********
 * Walk the Database
 *
 * The match count array is a double size circular
 * queue of match counts. It is double size so I do
 * not need to check the array bounds in the inner
 * match count increment loop.
 */

dbString = database - 1;
aTable = theStore->alphaTable;
aList = theStore->alphaList;
threshold = fragSize-diffsAllowed;

numMatch = 0;
count = -fragSize; // count = current database loc.

while((dbChar = (long)(*(++dbString))) > 0x00)
{

// circular queue reset to center
if(matchCur == matchTop)
{
matchCur += fragSize;

}

// check for a match to the fragment
if((*matchCur+*(matchCur+fragSize)) >= threshold)
{
matchPosition[numMatch] = count;
numMatch++;

}

// clear both old counts
*matchCur = 0;
*(matchCur+fragSize) = 0;

// increment match counts for all possible
// fragment alignments
hitOffset = aList + *(aTable + dbChar) - 1;
while((hitPos = (long)(*(++hitOffset))) >= 0)
{

*(matchCur + hitPos) += 1;
}

// The match count queue is walked in reverse
// order through memory because the alphaList
// indexes are positive.
matchCur--;
count++;

}

/*********
 * Check the remaining match count entries for
 * any fragments that extend beyond the end of
 * the database.
 */

for(loop=0; loop < diffsAllowed; loop++)
{
if(matchCur == matchTop)
{
matchCur += fragSize;

}

if((*matchCur+*(matchCur+fragSize)) >= threshold)
{
matchPosition[numMatch] = count;
numMatch++;

}
matchCur--;
count++;

}

return(numMatch);
}

// end of DNA_Match.c

